Os turbos convencionais têm o inconveniente de que a baixas rotações do motor o rodete da turbina apenas é impulsionado pelos gases de escape, pelo que o motor se comporta como se fosse atmosférico. Uma solução para isto é utilizar um turbo pequeno de baixa pressão que comece a comprimir o ar aspirado pelo motor desde rotações muito baixas, mas isto tem um inconveniente, é que a altas rotações do motor o turbo de baixa pressão não tem capacidade suficiente para comprimir todo o ar que necessita o motor, por tanto, a potência que ganhamos a baixas rotações vamos perde-la em altas. Para corrigir este inconveniente procurou-se a solução de dotar uma mesma máquina “sopradora” da capacidade de comprimir o ar com eficácia tanto a baixas rotações como em altas, para isso desenvolveram-se os turbo-compressores de geometria variável.
Funcionamento
O turbo TGV (Geometria Variável) diferencia-se do turbo convencional pela utilização de um prato ou coroa no qual estão montados umas aletas moveis que podem ser orientadas (todas em conjunto) num ângulo determinado mediante um mecanismo de vareta e alavanca empurradas por uma cápsula pneumática, sistema parecido com o utilizado na Válvula Wastegate
Turbos de geometria variável (TGV)
Para conseguir a máxima compressão do ar a baixas r.p.m. devem fechar-se as aletas já que diminuindo a secção entre elas, aumenta a velocidade dos gases de escape que incidem com mais força sobre as pás do rodete da turbina (menor Secção = maior velocidade). Quando o motor aumenta de r.p.m e aumenta a pressão no colector de admissão, a cápsula pneumática detecta-o através de um tubo ligado directamente ao colector de admissão e transforma-o num movimento que empurra o sistema de comando das aletas para que estas se movam para uma posição de abertura que faz diminuir a velocidade dos gases de escape que incidem sobre a turbina (maior secção = menor velocidade).
As aletas estão montadas sobre uma coroa (como se vê na imagem abaixo), podendo regular-se o veio roscado de união à cápsula pneumática para que as aletas abram antes ou depois. Se as aletas estiverem em abertura máxima, indica que há uma avaria já que a máxima inclinação só a adoptam para a função de emergência.
As vantagens do turbo-compressor VTG advêm de se conseguir um funcionamento mais progressivo do motor sobrealimentado. A diferença dos primeiros motores dotados com turbo-compressor convencional onde havia um grande salto de potência de baixas rotações para altas, o comportamento deixou de ser brusco para conseguir uma curva de potencia muito progressiva com grande quantidade de par desde baixas rotações e mantido durante uma ampla zona do nº de rotações do motor.
O inconveniente que apresenta este sistema é a sua maior complexidade, e por isso, o preço quando comparado com um turbo-compressor convencional. Assim como o sistema de lubrificação que necessita usar óleos de maior qualidade e mudas mais frequentes.
Até agora, o turbo-compressor VTG só se pode utilizar em motores Diesel, já que nos de gasolina a temperatura dos gases de escape é demasiado alta (200 - 300 ºC mais alta) para admitir sistemas como estes.
Gestão electrónica da pressão do turbo
Com a utilização da gestão electrónica tanto nos motores de gasolina como nos diesel, a regulação do controlo da pressão do turbo já não se deixa nas mãos de uma válvula de accionamento mecânico como é a válvula wastegate, que esta submetida a altas temperaturas, e os seus componentes como: a mola e a membrana; sofrem deformações e desgastes que influem num mau controlo da pressão do turbo, além de que no têm em conta factores tão importantes para o bom funcionamento do motor como são a altitude e a temperatura ambiente.
Para descrever como funciona um sistema de regulação da pressão do turbo, temos um esquema (figura inferior) que pertence a um motor Diesel (1.9 TDi) no qual se vêem todos os elementos que intervêem no controlo da pressão do turbo. A Gestão Electrónica Diesel (EDC Electronic Diesel Control) interpõe uma electroválvula de controlo da pressão (3) entre o colector de admissão e a válvula wastegate (4) que controla a todo momento a pressão que chega à válvula wastegate. Como se vê no circuito de controlo da pressão do turbo, é similar a um circuito de controlo convencional com a única diferença da incorporação da electroválvula de controlo (3).
As características principais deste sistema são:
- Permite ultrapassar o valor máximo da pressão do turbo.
- Tem corte de injecção a altas rotações.
- Proporciona uma boa resposta ao acelerador em toda a margem de rotações.
- A velocidade do turbo-compressor pode subir até às 110.000 r.p.m.
A electroválvula de controlo (AMAL): comporta-se como una “chave de acesso” que deixa passar mais ou menos pressão até à válvula wastegate. Esta é comandada pela ECU (unidade de controlo) que mediante impulsos eléctricos provoca a sua abertura ou fecho. Quando o motor gira a baixas e médias rotações, a electroválvula de controlo deixa passar a pressão que há no colector de admissão através da sua entrada (1) até à saída (2) e directamente até à válvula wastegate, cuja membrana é empurrada para provocar a sua abertura, mas isto não se terá efeito até que a pressão de sopro do turbo seja suficiente para vencer a força da mola. Quando as rotações do motor são altas a pressão que chega à válvula wastegate é muito alta, o suficiente para vencer a força da sua mola e abrir a válvula para derivar os gases de escape pelo bypass (baixa a pressão de sopro do turbo). Quando a ECU considera que a pressão no colector de admissão pode ultrapassar as margens de funcionamento normais, quer seja por circular em altitude, alta temperatura ambiente ou por uma solicitação por parte do condutor de altas prestações (acelerações fortes e repentinas), sem que isto ponha em risco o bom funcionamento do motor, a ECU pode modificar o valor da pressão do turbo que chega à válvula wastegate, cortando a passagem da pressão mediante a electroválvula de controlo, fecha a passagem (1) e abre a passagem (2) a (3), pondo assim em contacto a válvula wastegate com a pressão atmosférica que a manterá fechada e assim aumenta-se a pressão de sopro do turbo.
Para que fique claro, o que faz a electroválvula de controlo durante o seu funcionamento, é enganar a válvula wastegate desviando parte da pressão do turbo para que esta não actue.
A electroválvula de controlo é gerida pela ECU (unidade de controlo), ligando à massa um dos seus terminais eléctricos com uma frequência fixa, onde a amplitude do sinal determina quando deve abrir a válvula para aumentar a pressão de sopro do turbo no colector de admissão. A ECU para calcular quando deve abrir ou fechar a electroválvula de controlo tem em conta a pressão no colector de admissão por meio do sensor de pressão do turbo que vem incorporado na própria ECU e que recebe a pressão através de um tubo (7) ligado ao colector de admissão. Também tem em conta a temperatura do ar no colector de admissão por meio de um sensor de temperatura (6), o nº de r.p.m do motor e a altitude por meio de um sensor que por vezes está incorporado na ECU ou fora.
No esquema abaixo temos o circuito de admissão e escape de um motor Diesel de injecção directa (TDi) que utiliza um turbo-compressor de geometria variável (VTG). Como se vê no esquema ya não aparece a válvula de descarga ou wastegate, apesar disso a electroválvula de controlo da pressão do turbo (3) continua presente e dela sai um tubo que vai directamente ao turbo-compressor. Ainda que não se veja onde liga em concreto, o tubo, está ligado à cápsula pneumática ou actuador (nº 8 no primeiro desenho). O funcionamento do controlo da pressão do turbo é muito similar ao estudado anteriormente, a diferença é que a válvula wastegate é substituída pela cápsula pneumática, ambas têm um funcionamento parecido, enquanto que uma abre ou fecha uma válvula, a outra move um mecanismo de accionamento de aletas.
Neste caso o sensor de altitude está fora da ECU (unidade de controlo).